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Abstract—This paper presents ROSMOD, a model-driven
component-based development tool suite for the Robot Operating
System (ROS). ROSMOD is well suited for the design, develop-
ment and deployment of large scale distributed applications on
embedded hardware devices. We present the various features of
ROSMOD including the modeling language, the graphical user
interface, code generators and deployment infrastructure. We
describe the utility of this tool with a real-world case study - An
Autonomous Ground Support Equipment (AGSE) robot that was
designed and prototyped using ROSMOD for the NASA Student
Launch competition, 2014-2015.

I. INTRODUCTION

Robot Operating System (ROS) [1] is a meta-operating
system framework that facilitates robotic system development.
ROS is widely used in various fields of robotics including
industrial robotics, UAV swarms and low-power image pro-
cessing devices. The open source multi-platform support of
ROS has made it a requirement in several DARPA robotics
projects including the DARPA Robotics Challenge [2].

ROS enables the deployment of a network of interacting
ROS nodes, that communicate using the ROS middleware
infrastructure. ROS nodes can contact each other using dif-
ferent types of interaction patterns including synchronous
remote method invocation (RMI) and asynchronous message
passing publish-subscribe interactions. A ROS application is
a packaged set of ROS nodes that communicate through a
ROS Master, where a ROS Master is a single discovery and
communications broker that facilitates node-node flow setup.

This paper describes ROSMOD [3], an open source devel-
opment tool suite and run-time software platform for rapid pro-
totyping component-based software applications using ROS.
Using ROSMOD, an application developer can create, deploy
and manage ROS applications for distributed real-time embed-
ded systems. We define a strict component model, a model-
driven development workflow and run-time management tools
to build and deploy component-based software with ROS.

The utility of ROSMOD is described using a real-world
case study - An Autonomous Ground Support Equipment
(AGSE) robot that was designed, prototyped and deployed for
the NASA Student Launch Competition [4] 2014-2015. We

describe the challenges and requirements, the robotic design,
the software prototyping and the overall performance that lead
us to winning this competition.

The sections in this paper are organized as follows. Section
II describes the ROSMOD tool suite: The component model,
modeling language, graphical user interface, code generators
and deployment infrastructure. Section III describes our AGSE
robot and evaluates ROSMOD. Section IV describes our cur-
rent efforts to improving ROSMOD support with analysis tools
and run-time reconfiguration solutions. Section V presents
related efforts in the field of robotics, both using ROS and other
similar middleware platforms. Finally, Section VI presents
concluding remarks.

II. ROSMOD TOOL SUITE

A. Component Model

Software development using ROSMOD is influenced by the
principles of Component-based Software Engineering [5][6].
Large and complex systems are built by assembling reusable
software pieces called components. ROSMOD Components
contain executable code that implement functions, manipulate
state variables and interact with other components in the
applications. This model is inspired by our previous efforts
with the F6COM Component Model [7]. The architecture of
a ROSMOD component is shown in Figure 1.

ROSMOD components can contain (1) publishers, (2)
subscribers, (3) clients, (4) servers and (5) timers. Publisher
ports publish (without blocking) messages of a message topic,
and Subscriber ports subscribe to a message topic. Client
ports require the services offered by server ports. Server ports
provide services that can be used by the external world. Lastly,
periodic and sporadic timers are used to trigger components.
The semantics of these communication patterns are dictated
by ROS.

To facilitate interactions with other components in an
ordered manner, each component has a Component Message
Queue. This queue holds requests (i.e. messages) received from
other interacting components or from the component’s timers.
These requests are processed by a single thread (per compo-
nent) called the Component Executor Thread. This thread is



therefore responsible for executing all triggered callbacks e.g.
subscriber callbacks, server callbacks and timer callbacks.

Fig. 1: ROSMOD Component

Figure 2 shows a simple Client-Server component interac-
tion. An Image Processor component is periodically triggered
by a timer. At each timer expiry, this component, using its
client port, makes a blocking remote procedure call to a
Camera component. This service request is enqueued onto the
Camera’s message queue, and, when it reaches the front of
the queue, the Camera component executor thread executes
the corresponding server callback, returning the response to
the Image Processor. This message queue-based interaction is
also true for timers; when the timer in the Image Processor
expires, a timer callback request is enqueued onto its message
queue and eventually processed.

Fig. 2: Component Interactions

It must be noted here that in each component, the message
queue is processed by a single executor thread. Multiple
components may run concurrently but each component’s exe-
cution is single-threaded. Also, the component message queue
supports several scheduling schemes including FIFO (first-in
first-out), PFIFO (priority first-in first-out) and EDF (earliest
deadline first). Requests in the message queue are processed
using a non-preemptive scheduling scheme. This means that
each callback/operation run by the executor thread is run to
completion before the next one (waiting in the message queue)
is processed. These rules are strictly applied to all ROSMOD
components.

The single-threaded component execution is an important
choice as it allows robust application development that is free
of race conditions. Application integrators can avoid using
synchronization primitives and locking mechanisms while de-
veloping code and this greatly simplifies design. These choices
also more easily enable support for non-functional properties
such as fault isolation and tolerance, operation timeliness and
component lifecycle management.

B. Modeling Language

ROSMOD Projects are built using the ROSMOD Modeling
Language. With this language, ROS users can create models of
ROS workspaces, hardware topologies, deployment plans and
more. The tool suite provides a Graphical User Interface to
build these models but the state and configuration properties
of the project are saved in a set of text files (models) that
follow a strict set of grammatical rules, written using Antlr
4 [8]. Figure 3 shows the metamodel of the textual modeling
language as a UML [9] class diagram.

1) ROS Background: ROS workspaces are high-level con-
tainers for source code which may contain one or more ROS
packages. ROS packages are containers which may include
(1) one or more ROS message definitions for asynchronous
publish/subscribe, (2) one or more ROS service definitions for
synchronous RMI, and (3) one or more ROS Nodes, which
are processes that can communicate with each other using
predefined ROS messages or ROS services. In this way a ROS
package can be thought of as an application, and a ROS node
is a process in that application.

2) Software Model: The ROSMOD Software model repre-
sents a ROS workspace. Each model consists of one or more
ROS packages. Each ROS package contains definitions to (1)
messages, (2) services and (3) components. The component as-
sembly is derived from the interacting component ports. Ports
that are associated with callbacks e.g. subscribers, contain both
a priority and a deadline property to facilitate the scheduling
schemes in the component model.

3) Hardware Model: Hardware models completely de-
scribe the hardware architecture of the system. Here, the user
describes the different hardware hosts available for deploy-
ment, including their properties such as IP address, username
and SSH keys. These properties allow the user to directly map
executables to hardware in a specified network and allow the
deployment infrastructure to manage all remote operations and
help ensure security between applications. Deployment models
refer to such predefined hardware models when mapping
processes to hardware devices. Current work aims to improve
on this hardware model by adding concepts for subnets,
network interface controllers (NIC) and network links between
hardware devices to more accurately represent the network
topology.

4) Deployment Model: ROSMOD Deployment models
contain the specifications for ROS nodes (executable pro-
cesses). Each ROS node is ranked by a process priority and
is mapped to a specific hardware device on which it will be
executed. Each ROS node contains instances of software com-
ponents that control its behavior. These component instances
refer to specific components defined in the Software Model. At
run-time, each node creates one executor thread per component
instance before beginning its interaction with the rest of the
application.

a) Group Assignment: As shown in Figure 3, each
Component Instance can have port overrides. These definitions
override the ports previously defined in the Software Model.
By assigning certain ports to a group, a logical grouping of
component ports is achieved. This ensures a strong coupling
between ports.



Fig. 3: ROSMOD Project

Suppose an ImageProcessor client required a Camera
service, and this service was provided by two servers -
LowResCamera and HighResCamera. Upon deployment, ROS
typically couples the client with the server that advertises first.
Although this is the default behavior, users can ensure a strong
coupling between ports e.g. the ImageProcessor client connects
only to the LowResCamera. This coupling overrides the default
behavior, as seen in the Software Model.

C. Graphical User Interface

For large-scale applications, editing text files to describe
ROSMOD Projects can be difficult and error prone, especially
when referencing model objects defined in multiple files. To
ease this development, we have built a Python-based graphical
user interface, providing a rendering platform to quickly pro-
totype models and understand the relationship between model
elements e.g. component ports.

This integrates well with our deployment infrastructure
which opens up interfaces required to build ROS workspaces
and deploy node executables. Users can build packages, copy
deployment files, start a deployment, monitor running ROS
nodes and open component instance-specific logs, all from the
ROSMOD GUI.

D. Generators

There are currently two classes of generators in ROSMOD.

1) Skeleton ROS Workspace: The workspace generators
produce a prototype skeleton ROS workspace. This includes
(1) C++ classes for each ROSMOD component, (2) package-
specific messages and services, (3) Logger and XML parser-
specific files and (4) build system files, all organized fol-
lowing ROS package organization guidelines. Figure 4 shows
a sample generated code tree. This is the motor control
package used in our AGSE robot. There are three components
- radial actuator controller, vertical actuator controller and
a high-level servo controller. The same figure shows the

generated code specific to this package, organized following
ROS package guidelines.

Fig. 4: Workspace Code Generation

In each package, the generated code includes code preser-
vation markers around all callbacks and build system files
so that users can quickly add new pieces of code which are
guaranteed to be preserved after regeneration. This means that
users can, for example, (1) generate a ROS workspace for
a ROSMOD Software model, (2) add business logic code in
the generated skeleton callbacks, (3) go back to the models
and add additional ports to specific ROSMOD components
as required, and (4) regenerate the ROS workspace ensur-
ing preservation of business logic code and selective code
additions while accounting for the newly introduced ports.
Therefore, users do not need to complete the ROSMOD models
to begin C++ code development, enabling on-the-fly feature



additions to ROS applications.

2) Deployment-specific XML files: The XML generators
produce a batch of configuration files per deployment model.
These files are fed to the node executable at run-time to
easily change its behavior. Deployment-specific XML files
contain properties of component instances in each ROS node,
as seen in the deployment model in Figure 3. It is typically
desired to have knobs to easily tweak component properties
e.g. message queue scheduling scheme, logging levels etc. at
run-time without having to rebuild the ROS application.

E. Deployment Infrastructure

The workflow for software deployment is as shown Figure
5. Every ROS workspace is generated with an additional
node package. This builds a generic node executable that can
dynamically load libraries. Once the generators generate the
ROS workspace and deployment XML files, users complete
application development and build their ROS workspace. The
build process generates dynamically loadable libraries, one
for each component definition along with a single executable
corresponding to the generic node package. The generated
XML files contain metadata about about all ROS nodes
modeled in the ROSMOD Deployment Model. This includes
the component instances in each node and the appropriate
component libraries to be loaded. Based on the XML file
supplied to the node executable, the node will behave as one
of the ROS nodes in the model. This allows for a reusable
framework where a generic executable (1) loads an XML file,
(2) identifies the component instances in the node, (3) finds
the necessary component libraries to load and (4) spawns the
executor threads bound to each component.

Fig. 5: Software Deployment Workflow

In the above architecture, the deployment needs three
primary ingredients: (1) the generic node executable, (2)
dynamically loadable component libraries, and (3) an XML
file for each ROS node in the deployment model. For each new
node added to the deployment model, by merely regenerating
the XML files, we can establish a new deployment. The ROS
workspace is rebuilt only if new component definitions are
added to the Software Model. This architecture not only accel-
erates the development process but also ensures a separation
between the Software Model (i.e. the application structure)

and deployment-specific concerns e.g. component instantiation
inside ROS nodes.

III. CASE STUDY: AUTONOMOUS GROUND SUPPORT
EQUIPMENT

This section briefly describes an Autonomous Ground
Support Equipment (AGSE) robot that we designed, built, and
deployed for the 2014-2015 NASA Student Launch Compe-
tition [4]. Special emphasis is given to the value of a rapid
system prototyping methodology in the design process and
how it allowed the AGSE to overcome many of the challenges
and problems encountered during the competition.

A. Competition Requirements

The NASA Student Launch Initiative [4] is a research-
based competition partnered with NASA’s Centennial Chal-
lenges in order to stimulate rapid, low-cost development of
rocket propulsion and space exploration systems. Both col-
legiate and non-academic teams participate in the 8-month
competition cycle composed of design, fabrication, and testing
of flight vehicles, payloads, and ground support equipment.

The purpose of the 2014-2015 competition was to simulate
a Mars Ascent Vehicle (MAV) and to perform a sample
recovery from the Martian surface. The requirements for this
simulation were twofold: (1) Design and deploy an AGSE
robot that autonomously retrieves a sample off the ground and
stores it in the payload bay of a rocket, and (2) launch the
rocket to an altitude of 3000 ft. before safely recovering the
sample.

While the driving requirements of the competition were
fixed, many of the minor rules regarding AGSE performance,
behavior, and safety requirements evolved and were augmented
throughout the course of the eight month design cycle. The
volatile nature of these rules precipitated the need for rapidly
adjustable design and fabrication processes. For this purpose,
the mechanical design of the AGSE followed a modular,
quick-to-build approach and ROSMOD was used for software
development in order to quickly make on-the-fly adjustments
to system behavior.

B. Mechanical Design

The AGSE is a 4-DOF robot utilizing a revolute base
joint to rotate the robot body, two prismatic joints to move
vertically and horizontally, and a final revolute joint providing
an orientation wrist for the end effector to orient a gripper. A
wireframe and workspace rendering of the AGSE can be seen
in Figure 6.

The AGSE base is comprised of a machined sheet of alu-
minum, offering a secure mounting point for the upper robotic
segments. Above this foundation level, a vertical lead screw,
powered by a top-mounted DC motor, drives an aluminum
carriage assembly up and down the central rotational axis. A
similar lead screw-carriage assembly extends from the side of
the vertical carriage to provide motion within the horizontal
plane. The combined motion of these joints produces an open-
cylindrical workspace. The radially actuating carriage connects
to the end effector gripper via a wrist servo motor, which
allows the AGSE to interact with the payload and rocket bay.



Fig. 6: AGSE Mechanical Design

One significant set of challenges to the construction of
the AGSE were time, machinist skill level, and the facilities
available to the group’s workforce. The team consisted mainly
of undergraduate workers with limited machining experience
and no access to CNC machinery. Due to this constraint,
the mechanical design and software needed to accommodate
generous tolerance allowances in component machining. The
system also needed to be robust enough to recover from the
failure of a component, such as that detailed in Performance
Assessment.

The short eight month duration of the design cycle, from
initial planning to evaluation, meant that the AGSE system
had to undergo rapid development. As such, an iterative,
modular, design-build-test approach was implemented in order
to concurrently develop as many components of the hardware
and software systems as possible. An initial AGSE prototype
was conceptualized from off-the-shelf components and the me-
chanical and software systems were built in parallel, integrated,
and tested. These preliminary results were then used in future
development to produce a more ideal structure with greater
positional accuracy and system robustness. Due to the modular
nature of the system’s design, it was not necessary to imme-
diately build a completely new second system, so incremental
improvements could be made on a specific subsystem (such
as the robot’s gripper, any single degree of freedom, image
processing, motor control, etc.) as the design evolved.

C. Distributed Deployment

The AGSE robot is controlled by a distributed set of
embedded controllers. Figure 8 shows the high-level design
for the deployment architecture. There are three embedded
devices, each with its own responsibilities.

An NVIDIA Jetson TK1 periodically fetches the latest
webcam feed, performs image processing and high-level path
planning, updating a global state machine. A Beaglebone
black (BBB) mounted on top of the robot performs power
management, low-level motor control and feedback processing.
Lastly, a User Input Panel houses a second Beaglebone Black,
reacting to user input e.g. pause switch, touchscreen mode
changes etc. This last controller is also responsible for keeping

the user informed about the real-time state of the AGSE and
the current webcam feed. Each of these controllers host ROS
multiple nodes with ROSMOD component executor threads
periodically performing algorithmic computations, calculating
new robotic paths and maintaining the global state machine.

Fig. 8: AGSE Package Deployment

D. Software Prototyping with ROSMOD

The AGSE software [10] was iteratively designed and
rapid prototyped using ROSMOD. Figure 7 shows the fully
constructed ROSMOD models for the AGSE. The Software
Model consists of 8 components spread across three ROS
packages - motor control, high-level state machine control and
image processing. Each package is characterized by its local
set of messages, services and interacting components.

The deployment model shows the various ROS nodes in
the final system. Each node instantiates one or more com-
ponents defined in the Software model e.g. the positioning
node executes two component threads, one behaving as a
vertical actuator controller component and the other behaving
as a radial actuator controller component. Each of these nodes
is then deployed on one of the hardware devices modeled in
the hardware model.

The ROSMOD code generators enabled generation of
nearly 60% (6,000+ lines) of the total built code. For systems
like the AGSE with a medium-to-large set of interacting
components, a small change to the message structure, port
coupling, or functional dependencies can require a cascading
and exponentially increased set of code changes. Typically,
without ROSMOD, such code-breaking changes can cause a
few days of work to fix and the build system can become
brittle. This process can be cumbersome and error prone,
especially when structural changes to software are frequent.

However, using ROSMOD’s code generation and preser-
vation features, such changes can be countered with a few
seconds of code regeneration. As developers, we had to fill in
the missing pieces - the business logic of the generated call-
backs, completing the component interaction loops. This code
includes architecture-specific control, e.g. GPIO and encoder
readings, LED and switch settings, camera image acquisition,
and high-level control. Although the overall software was



Fig. 7: AGSE ROSMOD Model

frequently redesigned and tweaked, a large portion of this code
required at most a few weeks of development and testing - a
time frame that would not have been met without ROSMOD.

E. Performance Assessment

At the competition, the Vanderbilt AGSE was able to
complete the sample retrieval process in approximately 4.5
minutes. The recovery process, as shown in Figure 9, was
successful, with payload and rocket bay recognition occurring
quickly and efficiently. The AGSE was able to grasp the pay-
load using only two of its four padded end effector phalanges,
and successfully deposited the payload within the rocket bay.
This operation received high marks from the NASA officials
and earned the competition’s Autonomous Ground Support
Equipment Award.

System robustness was validated on the day of competition
when a key component failed and was able to be quickly
replaced with a different part with no detriment to system
performance. The Dynamixel AX-12A servo controlling the
base rotational degree of freedom of the AGSE suffered an
irreparable failure of its gearbox and had to be removed from
the robot. A backup of the servo was not readily available,
and a different model servo by the same company had to
be swapped in instead. This new model, a Dynamixel MX-
28T, while having similar performance as the old servo, had a
different communication protocol and mounting footprint, as
well as a more complex control scheme.

The component-based nature of ROSMOD allowed quick
modifications of the business logic of the servo controller
package to update the system to use the new hardware. The
new control scheme was quickly implemented and the new
physical placement of the servo due to its different mounting
footprint was accounted for in software. After these modifica-
tions were made, the AGSE was able to perform at its optimal
level during its part of the competition.

The rapid prototyping facilitated by ROSMOD and the
ROS infrastructure enabled the development of an overall
smarter robot. The software requirements for autonomy were

matched by the ROSMOD code generators such that develop-
ers had to spend little time setting up the build system and
interaction patterns. The speed of development was drastically
improved and the business logic code, i.e. the core of the
implementation of the system behavior, could be made more
robust.

Fig. 9: AGSE Calibration and Testing

IV. FUTURE WORK

Building robust, stable and deterministic applications using
ROSMOD requires both design-time analysis and runtime
management with potential reconfiguration solutions. Our pre-
vious work on timing analysis [11][12] and network QoS anal-
ysis [13] for component-based distributed real-time systems
has given us good insight into the verification and validation
requirements, challenges and general design principles for such



systems. Since these methods are model-based and generic,
we plan to completely integrate these tools into ROSMOD
such that any deployment model can be studied at design-
time for potential timing anomalies and network capacity and
admittance issues.

To facilitate this, current work on the ROSMOD runtime
package aims at introducing deadline monitoring on a per-
component basis. The goal of this monitoring thread is to
detect deadline violations in all callbacks and operations
handled by the component executor thread. This helps in iden-
tifying inefficient priority assignments and schedule feasibility
issues, which are typical demands for mission-critical real-time
systems.

V. RELATED EFFORTS

ROS has seen rapid development in the last few years and
the number of tools/packages released with ROS grows with
every release. In the recent past, several projects and tool suites
have established an integration with ROS. We discuss two such
infrastructures.

The current version of Matlab’s Simulink [14] supports
the Robotics System Toolbox [15] (RST), using which ROS
developers can model ROS workspaces as Simulink blocks,
generate executable code, while also exploiting Matlab’s large
suite of simulation and analysis tools. Unfortunately, the RST
was not available to us under our existing academic license.
Aside from the costs, our experience shows that it is fairly
difficult to modify the Matlab generated code, as well as
the modeling language (Simulink), or, for instance, enforce
specific scheduling policies, or support the component model
constructs that are possible in ROSMOD.

Some infrastructures, like OPRoS [16], provide model
transformations and integration tools to couple existing com-
ponent models and suites with ROS. In case of OPRoS,
the framework enables development of OPRoS applications
that can communicate with ROS applications. The model
transformations help users use the OPRoS platform to develop
ROS applications but the expected semantic behavior of the
applications, as seen in these models, may not necessarily
match the runtime system. Also, such tool suites are relevant
to ROS users only if they are also interested in using OPRoS
and do not directly focus on ROS development.

VI. CONCLUSIONS

Robot Operating System (ROS) is one of few preferred and
widely accepted platforms to develop large-scale robotics ap-
plications. ROS provides a light-weight middleware framework
and a variety of command-line tools to quickly prototype and
execute interacting processes. However, much of the develop-
ment process with ROS can still be automated and there is a
need for development tool suites that are easily accessible and
that, using model-driven development principles, can provide
for a rich set of design-time features such as modeling, code
generation, analysis, deployment and process monitoring along
with run-time support for general fault management.

The ROSMOD toolsuite presented in this paper supports
all these capabilities, as shown in our case study. However,
one of the most important aspects of such development tools

is the often neglected support for analysis, which is especially
relevant in safety-critical real-time systems. Our current work
aims at integrating our existing model-driven analysis tools
into ROSMOD to support not only a wider range of systems
but also a larger user group.
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